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Abstract 

The digital image correlation approach was used to assess the displacement distribution in the aluminium plate specimen 

during the tensile test. The strain distribution was then calculated from this displacement distribution. During the complete 

tensile test, we were able to measure the change in strain distribution. Although strain in other areas of the material 

essentially remains constant, localised strain becomes more pronounced as deformation progresses and appears before 

proof stress. The stress-strain relationship states that when real strain increases, the true stress, which is determined from 

the conventional average stress in the specimen's uniform area, drops after proof stress. As the real strain rises, the true 

stress calculated from the specimen's maximum strain also increases, indicating the presence of work hardening. A 

comparison was made between the stress-strain relationship for aluminium and the previously reported finding for steel. In 

order to assess the stress-strain relationship precisely, it is necessary to quantify the distribution of strain and take into 

account the local maximum strain. 
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1. Introduction 

 
In tensile test of metallic materials, measurement of distance between two gage marks on a specimen is regulated 

as a parameter to express elongation of the specimen in JIS (Japanese Industrial Standards Committee, 2011). Average 

strain in gage length can be obtained from change of gage length based on measurement of the conventional tensile test. 

Average strain is reasonable as a parameter to express the surface strain on the specimen in the case of uniform 

deformation. For the case of non-uniform deformation, magnitude of strain is not uniform on specimen surface and 

average strain may not be adequate to express the strain appeared actually on the specimen. For consideration of 

stress-strain relation based on the average strain may not always be reasonable in this case. 

In the previous paper, the author investigated about measurement of strain distribution continuously on specimen 

surface during tensile test of steels using digital image correlation (DIC) method (Kato, 2015). Change in strain 

distribution on specimen surface in yielding stage was measured and generation and spread of Lüder’s band were 

observed by measuring the plastic strain quantitatively. Local strain in the necking area was measured in the later stage 

of the test after maximum load and change in the maximum strain was observed until just before the fracture. 

Evaluation of stress-strain relation is important to derive parameters for materials characteristics and has been 

investigated for steels by many researchers so far (Tuchida, 2014). In our previous study, stress-strain relation was 

considered based on the local maximum strain instead of the conventional average strain in uniform area of the 

specimen and we could get a linear relationship until just before fracture similar to the relationship in the uniform 

plastic deformation stage before maximum loading. 

In this paper, the author measured strain distribution of specimen surface for plate specimens of aluminum during 

tensile test and observed occurrence of non-uniform strain distribution appeared during the test and compared for the 
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Fig. 2 Load-displacement curve for A1050 

(Numbers in the graph show elapsed time 

(sec) from start of the test) 

 

case of steels. In the transition stage from elastic to plastic 

deformation, strain distribution change around proof stress 

for aluminum was observed and compared to the yielding for 

steels. Strain distributions were measured during whole 

tensile test and stress-strain relation was considered until just 

before fracture. In consideration of stress-strain relation, 

obtained result based on local strain was compared to the 
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Fig. 3 Images of specimen surface during tensile test 

conventional average strain in uniform sectional area of the specimen and necessity of considering local maximum 

strain for stress-strain relation is discussed in this paper. 

 

2. Experimental Procedure 

 

Material used in this study is aluminum A1050 in JIS. Test specimen is a plate specimen as shown in Fig. 1. 

Thickness of the specimen is 3mm. Tensile test was made under a constant tensile speed with about 2mm/min. Load 

and displacement signals were taken into PC through A/D converter board from the test machine. White paint was 

sprayed and small random dots were made on the specimen surface after black paint was sprayed on the whole 

measurement area on the specimen. Image of the surface of a 

specimen was taken continuously without stopping the test 

machine as a movie during whole tensile test with a digital 

camera (NIKON D5500 with a lens of f=55mm). The camera 

was set in front of the specimen 400 mm apart from the surface. 

Time on the PC monitor was taken in a movie with the digital 

camera before the test and time of the PC was corresponded to 

the time of the movie. The movie file taken during the test was 

converted to static images with each one second after the test Fig. 4 Measurement area 
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Fig. 5 Displacement distributions (at 35 sec) 

 

and images were selected from those static images for the analysis of DIC method. 

Load-displacement curve for the tensile test is shown in Fig. 2. Numbers in the graph show the elapsed time (sec) 

from start of the test and the position where strain distribution was measured in this paper. Load increases linearly with 

displacement in the earlier stage and then the load takes the maximum value and then the load decreases gradually after 

taking the maximum value. Decrease rate of the load becomes larger with increase of the displacement and then the 

specimen fractures finally. This tendency of load-displacement curve is similar to the result previously published by the 

other researchers (Tokuda et al, 2014) (Noguchi, 2013) 

Images of the specimen surface during the test are shown in Fig. 3 for each time shown in the load-displacement 

curve in Fig. 2. Displacement distribution was measured for each image of specimen surface from the initial image with 

the load of almost 0 N shown as 0 sec in the picture using DIC method. Area where displacement distribution was 

measured is shown with the rectangle in Fig. 4. Displacement was measured with each 10-pixel step on x and y 

direction within the area. About DIC method for displacement measurement, many literatures have been published 

(W.F. Chu et al, 1985) and the details are not explained in this paper. About the basic parameters used in this study, 

subset size for the window for DIC was 31x31 pixels. Window for the subset is deformed by bi-linear function for x 

and y direction and interpolation of gray level between adjacent pixels is made with linear equation in DIC calculation. 

 

3. Measurement of Strain Distribution 

 
Figure 5 shows displacement distribution u and v measured for the image at 35 sec for A1050. From displacement 

distribution, we calculated strain distribution. We considered a window with adjacent 7x7 measured points of u and v for 
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calculation of strain components. Coordinates xc and yc was considered with the origin at the center of this calculation 

window. Distribution of measured u and v were approximated with second-order polynomials for xc and yc as the 

following equations. 

 

𝑢 = 𝑎0 + 𝑎1𝑥𝑐 + 𝑎2𝑦𝑐 + 𝑎3𝑥𝑐𝑦𝑐 + 𝑎 𝑥2 + 𝑎 𝑦2 (1) 

𝑣 = 𝑏0 + 𝑏1𝑥𝑐 + 𝑏2𝑦𝑐 + 𝑏3𝑥𝑐𝑦𝑐 + 𝑏 𝑥2 + 𝑏 𝑦2 (2) 

 

The coefficients in the equations can be obtained from the measured displacements at 7x7 points. Strain components x, y 

and xy can be obtained with the following equations. 
 

𝜕𝑢 
𝜀𝜀𝑥 = 

𝜕𝑥
 

𝜕𝑣 
𝜀𝜀𝑦 = 

𝜕𝑦
 

𝜕𝑢 

= 𝑎1 + 𝑎3𝑦𝑐 + 2𝑎4𝑥𝑐 (3) 

 
= 𝑏2 + 𝑏3𝑥𝑐 + 2𝑏5𝑦𝑐 (4) 

𝜕𝑣 
𝛾𝛾𝑥𝑦 = 

𝜕𝑦
 + 

𝜕𝑥𝑐 
= 𝑎2 + 𝑎3𝑥𝑐 + 2𝑎5𝑦𝑐 + 𝑏1 + 𝑎3𝑦𝑐 + 2𝑏4𝑥𝑐 (5) 

 

At the center position (xc=0, yc=0), the strain components 

are given with the following equations. 

 

𝜀𝜀𝑥 = 𝑎1, 𝜀𝜀𝑦 = 𝑏2, 𝛾𝛾𝑥𝑦 = 𝑎2 + 𝑏1 (6) 

 

Strain distribution for the whole measured area was 

calculated with moving the window of 7x7 measured points. 

Figure 6 shows relation between nominal stress and 

strain obtained from the experiment in this study. The figure 

shows stress-strain relation in the stage from elastic 

deformation to around proof stress. The nominal stress in 

this graph is obtained from load W divided by the initial 

sectional area A0 and the nominal strain is the conventional 

average strain in uniform area of the specimen. In the earlier 

stage of elastic deformation, stress-strain relation is almost 

linear and Young’s modulus is estimated as 54.1 GPa from 

the gradient. From the value of Young’s modulus, proof 

stress with 0.2% plastic strain can be estimated as about 125 

MPa shown in the figure and is located between 16sec and 
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(c)  Strain distribution at t=155sec 

Fig. 9 Distribution of strain x 
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18sec in stress-strain curve. 

Change in strain distribution was investigated around proof 

stress. Figure 7 shows distribution of strain x on x-direction at the 

center y=0 at the time shown in the figure. In elastic deformation 

stage, strain distribution has a scatter in distribution but it is 

almost uniform from 8sec to 14sec. Strain distribution is not 

uniform and large strain is seen clearly at a position of x with 

about 15mm at 16sec in the stage before proof stress. Thus non 

uniform distribution of plastic strain seems to appear and 

concentrated large strain exists before proof stress. And the 

concentrated strain becomes larger for later time of the test. 

Figure 8 shows distribution of displacement u on x-direction 

at specimen axis at the time shown in the figure. In elastic 

deformation stage, displacement distribution is linear to the 

position x. However, the displacement distribution changes 

largely after elastic deformation stage and the change becomes 

more drastically for progress of the tensile test. 

Distribution of strain x obtained from the displacement 

distribution is shown in Fig. 9 (a) on x-direction at y=0. Non 

uniform distribution starts around proof stress and large strain 

appears around x= 15mm. The maximum strain increases with 

progress of tensile test. Strain distribution on y-direction at the 

position of x with maximum strain is shown in Fig. 9 (b). Strain 

distribution around maximum strain is not uniform on the vertical 

direction  to 
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larger at the center and decreases to the edge of the specimen. 

Example of strain distribution of the specimen surface at the time 

155 sec is shown in Fig. 9 (c). 

 

4. Relation between Stress and Strain 

 
In Fig. 10(a), relation between nominal stress and nominal 

strain is shown. In the graph, nominal stress n is defined as load W 

divided by the initial cross sectional area of the specimen, A0. For 

nominal strain, two kinds of definition were considered. The one 

n_m is average value of strain x in the uniform area of the specimen 

and is the conventional nominal strain. The other n_max is the 

maximum strain shown in Fig. 9 (a) with averaging on y-direction 

shown in Fig. 9 (b). Relations between n and n_m and also n and 

n_max are shown in Fig. 10 (a). 

From nominal stress n and nominal strain n, True stress t and 

true strain t can be obtained from the following equations based on 

the assumption of constant volume for plastic deformation. 

-3 -2 
log(p) 

-1 0 𝜀𝜀𝑡 = ln(1 + 𝜀𝜀𝑛) (7) 
𝜎𝑡 = 𝜎𝑛(1 + 𝜀𝜀𝑛) (8) 

(b) t max -p vs. p 

Fig. 11 Relation between t max and p 
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strain are denoted as t_m and t_m respectively, and taking 

n_max as the nominal strain n, obtained true stress and strain 

are denoted as t_max and t_max. Thus relations between t_m 

and t_m and also t_max and t_max are shown in Fig. 10 (b). In 

relation between t_m and t_m , t_m decreases with increase of 

t_m after proof stress and it seems that there is work softening 

from this relation. In contrary, t_max increases with increase of 
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t_max and it seems that there is work-hardening from this 

relation. Conventional nominal strain n_m is not the value of 

strain actually exists on the specimen surface. The maximum 

strain n_max is the strain actually exists on the specimen surface 

and the relation between t_max and t_max is the relation actually 

exists in the specimen. It is found that there exists 

work-hardening in this material. 

Plastic strain p_ can be obtained by subtracting the total 

strain by the elastic strain as shown in the following equation. 
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Relation between t_max and p in log scale for the data after 

proof stress is shown in Fig. 11 (a). There is not a linear 

relationship between them. However, it is clear that gradient of 

the curve is positive. This gradient expresses work hardening 

coefficient and it is found that there exists positive work 

hardening coefficient. Proof stress p is almost 125MPa as 

shown in Fig. 6 before. The relation between log(t_max -p) 

and log(pt) is shown in Fig. 11 (b). From the figure, it is 

found that there is a linear relation between log(t_max -p) and 

log(p). Thus the following equation holds. 

 

log(𝜎𝑡_𝑚𝑎𝑥 − 𝜎𝑝) = 𝐴 + 𝑛′log(𝜀𝜀𝑝) (10) 
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where, c=10A=59.0 and n’=0.673 were obtained from the 

experimental result. Thus it is found that Ludwik’s equation 

holds for this material. 

For steel, SS400 in JIS, the author already published the 

experimental result (Kato, 2015). From the previous paper, 
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stress-strain relation is shown in Fig. 12 (a). In nominal 

stress-strain relation shown in Fig. 12 (a), maximum local 

Fig. 12 Relation between stress and strain (SS400) 

strain n_max differs from the conventional average strain n_m after tensile strength due to occurrence of necking by local 

deformation and in the true stress-strain relation, t_m based on the average strain decreases after tensile strength but t_max 

based on the maximum local strain increases after tensile strength. In true stress-strain relation in log scale, the linear 

relation holds until almost final fracture in t_max - t_max relation as shown in Fig. 12 (c). Work-hardening coefficient is 

estimated as n=0.190. 

From these experiments, in the case that local deformation exists, the conventional average strain in the uniform 

sectional area takes a value between the maximum local strain and strain at the other location and value of the average 

strain does not express actual strain appearing in the specimen. The local maximum strain is the strain that actually exists 

in the specimen. Thus, the local maximum strain should be considered to evaluate stress-strain relation from tensile test in 

the stage where local deformation occurs. After proof stress for A1050 and after tensile strength for SS400, average strain 
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cannot evaluate true stress-strain relation. We have to take into account the maximum strain in local deformation area to 

consider stress-strain relation in these cases. For this purpose, measurement of extension in gauge length is not enough and 

it is necessary to measure strain distribution on material surface during tensile test. 

 

5. Conclusions 

 

While subjecting metals to tensile testing, the author assessed strain distribution using the DIC technique. Thanks to the 

experiments, we now know these things to be true.  

1. Specimens begin to exhibit local plastic strain around the proof stress for the tensile test in A1050.  

2. Although work softening was identified in the stress-strain relation for A1050 when evaluating it using standard average 

strain, work hardening was discovered when considering maximum local strain.  

Third, rather than averaging strain across the whole specimen, the greatest strain at a specific location should be 

considered when assessing the stress-strain relationship in the presence of local deformation.  
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